

Can Integrated Photonics Light the Pathway to Energy-efficient Data Centers?

Mike Haney, Program Director, ARPA-E

February 29, 2016

Information and Communications Technology: The <u>fastest growing</u> sector in energy consumption.

➢ Global Data Center traffic: ~100 Zetta-bits/year by 2020;

... that's 100 x 10²¹ bits/year!

... equivalent to ~200 x 10⁶ selfies/sec.

> Data Centers are not merely Data Warehouses,

.... but are *Data Processing* Centers.

Pathways to Improving Data Center Efficiency

But best opportunity for <u>transformative impact</u> may be through <u>NETWORK ARCHITECTURE</u> advancement:

- Overcome bandwidth limits to chips that hinder performance scaling.
- Enable new network topologies to provide multiplicative performance enhancement.

Data Center Trends

Integrated Metal vs. Integrated Photonic Interconnects

Inter-chip Integrated <u>Electronic</u> Interconnects:

> 1 pJ/bit << 100 Gbit/sec/wire

Inter-chip Integrated Photonic Interconnects:

< 1 pJ/bit

>> 100 Gbit/sec/waveguide

Improving Data Center Throughput/Efficiency

Example Data Center Topology

Example after Photonic Innovation

Data Center Trends

Integrated Photonic Interconnects overcome the next brick wall.

Technology Opportunity Space

Links

VCSELs, Si Photonics, Hybrid III-V/Si, Waveguides

Switch Technologies

Ring resonators, Hybrid Electro-Optical, AWGs...

Network Architecture

Fat Tree, Flattened Butterfly All-to-All, Algorithms

A. Ramaswamy et al., OFC2015

DOI: 10.1364/CLEO_S1.2014.SM2G.3,

DOI: 10.1109/JLT.2011.2177244

Fig. 1. 2 × 2 Switching element in (a) "drop" and (b) "through" state.

DOI: 10.1364/OE.23.0001159, Rep. Prog. Phys. 75 (2012) 046402

Data Center Challenge and Opportunity Projections

"Teaming Partner List" Just Published:

 $\underline{\mathit{EN}}$ ergy-efficient $\underline{\mathit{L}}$ ight-wave $\underline{\mathit{I}}$ ntegrated $\underline{\mathit{T}}$ echnology $\underline{\mathit{E}}$ nabling $\underline{\mathit{N}}$ etworks that $\underline{\mathit{E}}$ nhance $\underline{\mathit{D}}$ atacenters

"ENLITENED"

Thank You!